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Note: this is only a draft of the solutions discussed on Monday and might contain some typos or more or less
imprecise statements. If you find some, please let me know.

Note: the solution to Ex. 5 (additional) has been corrected!

Ex. 1.8 (Shreve)

(Moment-generating function). Let X be a nonnegative random variable, and assume that
p(t) = Ee

is finite for every t € R. Assume further that E [Xetx] < 0o for everyt € R. The purpose of this exercise is to
show that ' (t) = E [Xe'X] and, in particular, ¢'(0) = EX.
We recall the definition of derivative:

Qpl(t) = lim Sﬁ(t) — @(5) . EetX — EBSX |:etXesX:| .

s—t t—s s—t t—s s—t

The limit above is taken over a continuous variable s, but we can choose a sequence of numbers {s,}5°,
converging to t and compute
tX snX
. et —e’n
i & | <=0 |

Sp—>t t— sy
where now we are taking a limit of the expectations of the sequence of random variables

etX _ 63"X
Y;L =
t— s,

If this limit turns out to be the same, regardless of how we choose the sequence {s,}5%, that converges to t,
then this limit is also the same as limg_; |E e —et¥

} and is ¢ (t).

t—s
The Mean Value Theorem from calculus states that if f(t) is a differentiable function, then for any two numbers
s and t, there is a number 0 between s and t such that

f@&) = f(s) = f1(O)(t = s).
If we fix w € Q and define f(t) = X )| then this becomes
X @) _ s X (@) — (¢ — §) X (w)ef @)X (@) (1.9.1)
where O(w) is a number depending on w (i.e., a random variable lying between t and s).

(i) Use the Dominated Convergence Theorem (Theorem 1.4.9) and equation (1.9.1) to show that

lim BY, =E | lim Y, | = E[Xe™¥].

n— oo |:’I’L—>OO

This establishes the desired formula ¢'(t) = E [Xe™X].

First, recall the Dominated Convergence Theorem.



(ii)

Thm. 1.4.9. Let X1,Xs,... be a sequence of random variables converging almost surely to a random
variable X . If there is another random variable Y such that EY < oo and |X,| <Y almost surely for
every n, then

lim EX,, = EX.

n—oo

Now, from (1.9.1) and the definition of Y;, we have

etX _ 68”X

‘Yn| =

: ’ _ |X€9,LX} ) X < Xe2ltX, (1)
— s,

where (x) is because of nonnegativity of X. The last inequality comes from the fact that 6,, € [s,,t] (or
0, € [t,s,]) and for n large enough 6,, < max{t, s,} < 2|t| because we took {s,}52; such that s, — t.

As we assumed that E [X etX ] < 00, Vt € R, we can apply the Dominated Convergence Theorem to the
sequence of Y,,, dominated by (integrable) Xe?**, to obtain

¢'(t) = lim EY, =E [ lim Yn} =E [Xe™],
n— o0 n—o0

which completes the proof.

Suppose the random variable X can take both positive and negative values and Ee'X < oo and E [|X|etX} <
for every t € R. Show that once again ¢'(t) = E[Xe'™|. (Hint: Use the notation (1.3.1) to write
X=X+t-X".)

Recall the notation 1.3.1. defining the positive and negative parts of X:
X1 (w) = max{X(w),0}, X (w)=max{—X(w),0}. (1.3.1)

If X can take both positive and negative values, then, as indicated in the task, write X = XT — X~ so
X becomes a difference of two positive random variables.

Then, similarly as in (i), by the Mean Value Theorem, there exists 6,, € [sy,t] (or 0, € [t, ss]) such that
Y, = XefnX

and for sufficiently large n
[Y,| = ‘Xee"X’ < | X|ef X < | X|e2HIXT,

So, to apply the Dominated Convergence Theorem, we need to show that E [|X|et‘X|] < 00, Vt € R. We
have, Vt € R,

E [|X|et|X|] —E [X*dxﬁl{xzo}} +E [X*etX’H{X@}} . (2)
Since we assumed E [|X|etX] < ooVt € R, so
E[|X]eX] =B [X e Tpxsg | +E[X 7™ Tixag| < o0,
which implies that Vt € R
E[X*e™ Tixsg | < oo,
E [Xfeftxf]l{x@}} < 00.
Or, equivalently!, V¢t € R
E[X*e™ Txs0)] < o0,
E {X‘etxf]l{xw}} < 00.
Thus, going back to (2) we can state that V¢ € R
E[IX|e’¥] = E [ X+ Txs0)| +E [X e Tixay| < oo

Then also E [| X |el1X]] < oo, Vt € R.

Now, we can finally apply the Dominated Convergence Theorem to obtain that

#(t) = lim EY, =E | lim Y, | = E [Xe'X].

n—00

ndeed, because it has to hold for any V¢ € R, so for both positive and negative values of t.



Ex. 1.15 (Shreve)

Let X be a random variable on a probability space (2, F,P), and assume X has a density function f(x) that is
positive for every x € R. Let g be a strictly increasing, differentiable function satisfying

lim g(y) = —oo, lim g(y) = oo,

Yy——00 y—00

and define the random variable Y = g(X).
Let h(y) be an arbitrary nonnegative function satisfying ffooo h(y)dy = 1. We want to change the probability
measure so that h(y)is the density function for the random variable Y. To do this, we define

,_ MalX)g'(X)

%) ®)

Now define P by
P(A) = / ZdP, VA€ F.
A

(i) Show that Z is nonnegative and EZ = 1.

We assumed that the density f is positive Vo € R, h is nonnegative, and g is strictly increasing, so its
derivative ¢’ is positive. Hence, by its definition (3), clearly, Z > 0.

Next, we have

_ | Pe(X))g'(X)

EZE[ F(X) ]
[N,
-/ ﬂX) fle)d

/h (X)g' (X)dx
:/Rh(u)du
=1

by the assumption that h integrates to 1.

(ii) Show that Y has density h under P.

We defined P as
P(A) = / ZdP, YA€ F.
A

First, let us check what the cumulative distribution function of ¥ under P looks like, since if Y has density
h under P
. h(g(X)g'(X
b < | (49X (X)) .,
{g(X)<a}

f(X)

:/g”@mamwmw
@

g (a)
:/: h(g(x))g/ (z)dz

f(z)dz

g (a)
=/1 h(g(x))dg(z)

oo

- [ OO h(w)du,

where the last step comes from the change of variable formula, the last. Hence, under P the random
variable Y = ¢g(X) has density h.



Ex. 7 (additional)

Let X be a nonnegative random variable. Show that [ XdP > w. Assume further that [ XdP = 0. Show
that it follows that P(X = 0) = 1.

Lemma: (Markov’s inequality) If X is a nonnegative integrable random variable and a > 0, then

EX > aP({X > a}).

Proof. For any event A consider the indicator random variable of this event, i.e.

1, if A occurs,
Iqa= .
0, otherwise.

Then, Iy x4y = 1 if the event {X > a} occurs and I; x4 = 0 if {X < a}. So, for a > 0 we have
X = al{x>ay (4)

since our indicator random variable can attain only two values: if the event {X > a} occurs, then I{xs,3 =1
and so
X >a=al{xsa;

if the event {X < a} occurs, then I;x~q) = 0, hence

X>0= aH{X>a}.

Next, take the expectation on both sides of (4), which cannot reverse the inequality as the expectation is a
monotonically increasing function. We have

EX >E [a]I{XM}} . (5)
Next, due to linearity of expectation, we can rewrite the RHS in (5) as follows
E [al{x>q}] = aE [I{xsa}] = a[l-P{X > a}) +0-P{X < a})] = aP({X > a}).
Finally, we have
EX > aP({X > a}),

which completes the proof. O

To show the fist part of the question notice that f XdP = EX, so that it suffices to use Markov’s inequality
with a = 1.
n

In the second part of the question we need to show that if the integral of a nonnegative function is equal to
zero, then this function is zero almost everywhere. In probabilistic parlance, if a nonnegative random variable
has zero expected value, then it has to be equal to zero almost surely.

To show this, consider the set A = {w € Q: X (w) > 0}. It is equal to the union of an increasing sequence of
sets A, ={weQ: X(w)>1/n},n=1,2,..., ie.

A:{wEQ:X(w)>0}:G{weQ:X(w)>1/n}:DAn.

Hence 1
OS—P(An)g/ Xd]P’S/XdX:O,
n An A

from which follows that P(4,) = 0. Next, due to the monotone continuity of probability?, we have

P(A) = lim P(A4,) =0,

n— 00

which completes the proof.

2Recall: if (An)$2, is an increasing sequence of sets, i.e. Ay C A2 C -+ C Ay C Apy1 C ..., such that ;2 An = A, then
P(A) = limp— o0 P(Ar) (similarly for a decreasing sequence of sets).



Ex. 5 (additional)?!

Consider the setting of Theorem 1.6.1. Show that P and P are equivalent iff P(Z >0)=1.
First, recall theorem 1.6.1.

Thm. 1.6.1. Let (Q,F,P) be a probability space and let Z be an almost surely nonnegative random variable
with EZ = 1. For A € F, define

P(A) = /A Z(w)dP(w). (1.6.3)

Then P is a probability measure. Furthermore, if X is a nonnegative random variable, then
EX = E[XZ].

If Z is almost surely strictly positive, we also have
- [Y
EY = [] (1.6.5)

for every nonnegative random variable Y.
Next, recall the definition of equivalence of probabilistic measures.

Def. 1.6.3. Let Q # 0 and F a o-algebra of subsets 2. Two probability measures P and P on (Q,F) are said
to be equivalent, denoted P ~ P, if they agree which sets in F have probability zero.

In other words,
PP e (JP’(A):O(:)]?’(A):O, VAe]-").

Proof. (of the statement in the exercise)

<« Suppose that P(Z > 0) = 1.

First, let A € F be such that P(A) = 0. Then the random variable [4Z is almost surely zero under P,
hence, by the definition of PP given by (1.6.3) we have

B(A) = /Q La () Z(w)dP(w) = 0.

Next, let B € F satisfy P(B) = 0. Since we assume P(Z > 0) = 1, so P(Z = 0) = 0, and then, by (1.6.3)
we have

P(Z =0) = / ZdP
{z=0}

= / I{z—0y ZdP
Q

0.

Hence, also under P the random variable Z is almost surely positive and we can divide by Z under P.
Then the random variable %]IB = 0 almost surely under P and by (1.6.5) we have

1
El; =R {Z]IB} =0,

SO
P(B) = Elp = 0.

Hence, P and P agree which sets have zero probability measure, i.e. P ~ P.

3Not discussed in the class.
4Corrected!



= Suppose P ~ P, so that P(4) = 0 < P(A) =0, VA e F.
Consider the following sets
B={we: Z(w) =0},
B ={weQ: Z(w) >0},

so that indeed Q = B U BY, because we assumed that P(Z > 0) = 1.
Then, by (1.6.3) we have

= 0 ]I{wGQ: Z(w):O}Z<w>d]P(w)

|
=

)

and due to the equivalence of measures P(B) = 0. Hence,
P(Z>0)=PBY) =1-P(B)=1-0=1,

which completes the proof.

Just for completeness - Radon-Nikodym’s theorem.

Thm. 1.6.7. Let P and P be equivalent probability measures defined on (Q,TF). Then there exists an almost
surely positive random variable Z such that EZ =1 and for every A € F

P(A) = /A Z(w)dP(w).



