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Note: this is only a draft of the solutions discussed on Monday and might contain some typos or more or less
imprecise statements. If you find some, please let me know.

Note: the solution to Ex. 5 (additional) has been corrected!

Ex. 1.8 (Shreve)

(Moment-generating function). Let X be a nonnegative random variable, and assume that

ϕ(t) = EetX

is finite for every t ∈ R. Assume further that E
[
XetX

]
<∞ for every t ∈ R. The purpose of this exercise is to

show that ϕ′(t) = E
[
XetX

]
and, in particular, ϕ′(0) = EX.

We recall the definition of derivative:

ϕ′(t) = lim
s→t

ϕ(t)− ϕ(s)

t− s
= lim
s→t

EetX − EesX

t− s
= lim
s→t

E
[
etX − esX

t− s

]
.

The limit above is taken over a continuous variable s, but we can choose a sequence of numbers {sn}∞n=1

converging to t and compute

lim
sn→t

E
[
etX − esnX

t− sn

]
,

where now we are taking a limit of the expectations of the sequence of random variables

Yn =
etX − esnX

t− sn
.

If this limit turns out to be the same, regardless of how we choose the sequence {sn}∞n=1 that converges to t,

then this limit is also the same as lims→t E
[
etX−esX
t−s

]
and is ϕ′(t).

The Mean Value Theorem from calculus states that if f(t) is a differentiable function, then for any two numbers
s and t, there is a number θ between s and t such that

f(t)− f(s) = f ′(θ)(t− s).

If we fix ω ∈ Ω and define f(t) = etX(ω), then this becomes

etX(ω) − esX(ω) = (t− s)X(ω)eθ(ω)X(ω), (1.9.1)

where θ(ω) is a number depending on ω (i.e., a random variable lying between t and s).

(i) Use the Dominated Convergence Theorem (Theorem 1.4.9) and equation (1.9.1) to show that

lim
n→∞

EYn = E
[

lim
n→∞

Yn

]
= E

[
XetX

]
.

This establishes the desired formula ϕ′(t) = E
[
XetX

]
.

First, recall the Dominated Convergence Theorem.
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Thm. 1.4.9. Let X1, X2, . . . be a sequence of random variables converging almost surely to a random
variable X. If there is another random variable Y such that EY < ∞ and |Xn| ≤ Y almost surely for
every n, then

lim
n→∞

EXn = EX.

Now, from (1.9.1) and the definition of Yn we have

|Yn| =
∣∣∣∣etX − esnXt− sn

∣∣∣∣ =
∣∣XeθnX ∣∣ (∗)

= XeθnX ≤ Xe2|t|X . (1)

where (∗) is because of nonnegativity of X. The last inequality comes from the fact that θn ∈ [sn, t] (or
θn ∈ [t, sn]) and for n large enough θn ≤ max{t, sn} ≤ 2|t| because we took {sn}∞n=1 such that sn → t.

As we assumed that E
[
XetX

]
< ∞, ∀t ∈ R, we can apply the Dominated Convergence Theorem to the

sequence of Yn, dominated by (integrable) Xe2tX , to obtain

ϕ′(t) = lim
n→∞

EYn = E
[

lim
n→∞

Yn

]
= E

[
XetX

]
,

which completes the proof.

(ii) Suppose the random variable X can take both positive and negative values and EetX <∞ and E
[
|X|etX

]
< ∞

for every t ∈ R. Show that once again ϕ′(t) = E
[
XetX

]
. (Hint: Use the notation (1.3.1) to write

X = X+ −X−.)

Recall the notation 1.3.1. defining the positive and negative parts of X:

X+(ω) = max{X(ω), 0}, X−(ω) = max{−X(ω), 0}. (1.3.1)

If X can take both positive and negative values, then, as indicated in the task, write X = X+ −X−, so
X becomes a difference of two positive random variables.

Then, similarly as in (i), by the Mean Value Theorem, there exists θn ∈ [sn, t] (or θn ∈ [t, ss]) such that

Yn = XeθnX

and for sufficiently large n
|Yn| =

∣∣XeθnX ∣∣ ≤ |X|eθnX ≤ |X|e2|t||X|.

So, to apply the Dominated Convergence Theorem, we need to show that E
[
|X|et|X|

]
< ∞, ∀t ∈ R. We

have, ∀t ∈ R,

E
[
|X|et|X|

]
= E

[
X+etX

+

I{X≥0}

]
+ E

[
X−etX

−
I{X<0}

]
. (2)

Since we assumed E
[
|X|etX

]
<∞,∀t ∈ R, so

E
[
|X|etX

]
= E

[
X+etX

+

I{X≥0}

]
+ E

[
X−e−tX

−
I{X<0}

]
<∞,

which implies that ∀t ∈ R

E
[
X+etX

+

I{X≥0}

]
<∞,

E
[
X−e−tX

−
I{X<0}

]
<∞.

Or, equivalently1, ∀t ∈ R

E
[
X+etX

+

I{X≥0}

]
<∞,

E
[
X−etX

−
I{X<0}

]
<∞.

Thus, going back to (2) we can state that ∀t ∈ R

E
[
|X|et|X|

]
= E

[
X+etX

+

I{X≥0}

]
+ E

[
X−etX

−
I{X<0}

]
<∞.

Then also E
[
|X|e|t||X|

]
<∞, ∀t ∈ R.

Now, we can finally apply the Dominated Convergence Theorem to obtain that

ϕ′(t) = lim
n→∞

EYn = E
[

lim
n→∞

Yn

]
= E

[
XetX

]
.

1Indeed, because it has to hold for any ∀t ∈ R, so for both positive and negative values of t.
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Ex. 1.15 (Shreve)

Let X be a random variable on a probability space (Ω,F ,P), and assume X has a density function f(x) that is
positive for every x ∈ R. Let g be a strictly increasing, differentiable function satisfying

lim
y→−∞

g(y) = −∞, lim
y→∞

g(y) =∞,

and define the random variable Y = g(X).
Let h(y) be an arbitrary nonnegative function satisfying

∫∞
−∞ h(y)dy = 1. We want to change the probability

measure so that h(y)is the density function for the random variable Y . To do this, we define

Z =
h(g(X))g′(X)

f(X)
. (3)

Now define P̃ by

P̃(A) =

∫
A

ZdP, ∀A ∈ F .

(i) Show that Z is nonnegative and EZ = 1.

We assumed that the density f is positive ∀x ∈ R, h is nonnegative, and g is strictly increasing, so its
derivative g′ is positive. Hence, by its definition (3), clearly, Z ≥ 0.

Next, we have

EZ = E
[
h(g(X))g′(X)

f(X)

]
=

∫
R

h(g(X))g′(X)

f(X)
f(x)dx

=

∫
R
h(g(X))g′(X)dx

=

∫
R
h(u)du

= 1,

by the assumption that h integrates to 1.

(ii) Show that Y has density h under P̃.

We defined P̃ as

P̃(A) =

∫
A

ZdP, ∀A ∈ F .

First, let us check what the cumulative distribution function of Y under P̃ looks like, since if Y has density
h under P̃

P̃(Y ≤ a) =

∫
{g(X)≤a}

h(g(X))g′(X))

f(X)
dP

=

∫ g−1(a)

−∞

h(g(x))g′(x)

f(x)
f(x)dx

=

∫ g−1(a)

−∞
h(g(x))g′(x)dx

=

∫ g−1(a)

−∞
h(g(x))dg(x)

=

∫ a

−∞
h(u)du,

where the last step comes from the change of variable formula, the last. Hence, under P̃ the random
variable Y = g(X) has density h.
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Ex. 7 (additional)

Let X be a nonnegative random variable. Show that
∫
XdP ≥ P(X>1/n)

n . Assume further that
∫
XdP = 0. Show

that it follows that P(X = 0) = 1.

Lemma: (Markov’s inequality) If X is a nonnegative integrable random variable and a > 0, then

EX ≥ aP({X ≥ a}).

Proof. For any event A consider the indicator random variable of this event, i.e.

IA =

{
1, if A occurs,

0, otherwise.

Then, I{X>a} = 1 if the event {X > a} occurs and I{X>a} = 0 if {X ≤ a}. So, for a > 0 we have

X ≥ aI{X>a}, (4)

since our indicator random variable can attain only two values: if the event {X > a} occurs, then I{X>a} = 1
and so

X > a = aI{X>a};

if the event {X ≤ a} occurs, then I{X>a} = 0, hence

X > 0 = aI{X>a}.

Next, take the expectation on both sides of (4), which cannot reverse the inequality as the expectation is a
monotonically increasing function. We have

EX ≥ E
[
aI{X>a}

]
. (5)

Next, due to linearity of expectation, we can rewrite the RHS in (5) as follows

E
[
aI{X>a}

]
= aE

[
I{X>a}

]
= a [1 · P({X > a}) + 0 · P({X ≤ a})] = aP({X > a}).

Finally, we have

EX ≥ aP({X > a}),

which completes the proof.

To show the fist part of the question notice that
∫
XdP = EX, so that it suffices to use Markov’s inequality

with a = 1
n .

In the second part of the question we need to show that if the integral of a nonnegative function is equal to
zero, then this function is zero almost everywhere. In probabilistic parlance, if a nonnegative random variable
has zero expected value, then it has to be equal to zero almost surely.

To show this, consider the set A = {ω ∈ Ω : X(ω) > 0}. It is equal to the union of an increasing sequence of
sets An = {ω ∈ Ω : X(ω) > 1/n}, n = 1, 2, . . . , i.e.

A = {ω ∈ Ω : X(ω) > 0} =

∞⋃
n=1

{ω ∈ Ω : X(ω) > 1/n} =

∞⋃
n=1

An.

Hence

0 ≤ 1

n
P(An) ≤

∫
An

XdP ≤
∫
A

XdX = 0,

from which follows that P(An) = 0. Next, due to the monotone continuity of probability2, we have

P(A) = lim
n→∞

P(An) = 0,

which completes the proof.

2Recall: if (An)∞n=1 is an increasing sequence of sets, i.e. A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ . . . , such that
⋃∞

n=1 An = A, then
P(A) = limn→∞ P(An) (similarly for a decreasing sequence of sets).
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Ex. 5 (additional)34

Consider the setting of Theorem 1.6.1. Show that P̃ and P are equivalent iff P(Z > 0) = 1.

First, recall theorem 1.6.1.

Thm. 1.6.1. Let (Ω,F ,P) be a probability space and let Z be an almost surely nonnegative random variable
with EZ = 1. For A ∈ F , define

P̃(A) =

∫
A

Z(ω)dP(ω). (1.6.3)

Then P̃ is a probability measure. Furthermore, if X is a nonnegative random variable, then

ẼX = E[XZ].

If Z is almost surely strictly positive, we also have

EY = Ẽ
[
Y

Z

]
(1.6.5)

for every nonnegative random variable Y .

Next, recall the definition of equivalence of probabilistic measures.

Def. 1.6.3. Let Ω 6= ∅ and F a σ-algebra of subsets Ω. Two probability measures P and P̃ on (Ω,F) are said
to be equivalent, denoted P ∼ P̃, if they agree which sets in F have probability zero.

In other words,

P ∼ P̃ ⇐⇒
(
P(A) = 0⇔ P̃(A) = 0, ∀A ∈ F

)
.

Proof. (of the statement in the exercise)

⇐ Suppose that P(Z > 0) = 1.

First, let A ∈ F be such that P(A) = 0. Then the random variable IAZ is almost surely zero under P,
hence, by the definition of P̃ given by (1.6.3) we have

P̃(A) =

∫
Ω

IA(ω)Z(ω)dP(ω) = 0.

Next, let B ∈ F satisfy P̃(B) = 0. Since we assume P(Z > 0) = 1, so P(Z = 0) = 0, and then, by (1.6.3)
we have

P̃(Z = 0) =

∫
{Z=0}

ZdP

=

∫
Ω

I{Z=0}ZdP

= 0.

Hence, also under P̃ the random variable Z is almost surely positive and we can divide by Z under P̃.
Then the random variable 1

Z IB = 0 almost surely under P̃ and by (1.6.5) we have

EIB = Ẽ
[

1

Z
IB
]

= 0,

so
P(B) = EIB = 0.

Hence, P and P̃ agree which sets have zero probability measure, i.e. P ∼ P̃.

3Not discussed in the class.
4Corrected!
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⇒ Suppose P ∼ P̃, so that P(A) = 0⇔ P̃(A) = 0, ∀A ∈ F .

Consider the following sets

B = {ω ∈ Ω : Z(ω) = 0},
BC = {ω ∈ Ω : Z(ω) > 0},

so that indeed Ω = B ∪BC , because we assumed that P(Z ≥ 0) = 1.

Then, by (1.6.3) we have

P̃(B) =

∫
B

Z(ω)dP(ω)

=

∫
Ω

IBZ(ω)dP(ω)

=

∫
Ω

I{ω∈Ω:Z(ω)=0}Z(ω)dP(ω)

= 0,

and due to the equivalence of measures P(B) = 0. Hence,

P(Z > 0) = P(BC) = 1− P(B) = 1− 0 = 1,

which completes the proof.

Just for completeness - Radon-Nikodym’s theorem.

Thm. 1.6.7. Let P and P̃ be equivalent probability measures defined on (Ω,F). Then there exists an almost
surely positive random variable Z such that EZ = 1 and for every A ∈ F

P̃(A) =

∫
A

Z(ω)dP(ω).
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